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Abstract

Purpose – The purpose of this paper is to develop a general numerical solution for the wetting fluid
spread into porous media that can be used in solving of droplet spread into soils, printing
applications, fuel cells, composite processing.
Design/methodology/approach – A discrete capillary network model based on micro-force
balance is numerically implemented and the flow for an arbitrary capillary number can be solved. At
the fluid interface, the boundary condition that accounts for the capillary pressure jump is used.
Findings – The wetting fluid spread into porous medium starts as a single-phase flow, and after
some particular number of the porous medium characteristic length scales, the multi-phase flow
pattern occurs. Hence, in the principal flow direction, the phase content (saturation) decreases, and in
the lower limit for the capillary number sufficiently small, the saturation should become constant.
This qualitative saturation behavior is observed irrespective of the flow dimensionality, whereas the
quantitative results vary for different flow systems.
Research limitations/implications – The numerical solution has to be expanded to solve the
spread of the fluid in the porous medium after there is no free fluid left at the porous medium surface.
Practical implications – It is shown that the multi-phase flow can develop even on a small domain
due to the porous medium heterogeneity. Neglecting the medium heterogeneity and flow type can
lead to a large error as shown for the droplet spread time in the porous medium.
Originality/value – This is believe to be the only paper relating to solving the droplet spread into
porous medium as a multi-phase flow problem.
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Introduction
There is a variety of engineering applications ranging from oil recovery and soil flows
to composites, printing, polymer filling, fuel cells in which the spread of the fluid phase
into porous medium occurs (Holman et al., 2002; Henz et al., 2003; Neacsu et al., 2007).
These are multi-physics problems that involve momentum, heat and mass transport,
where the structure of porous medium and the distribution of fluid phase that spreads
into porous medium change, as well as the characteristic length scales (e.g. in oil
recovery the length scale is in kilometers, whereas in printing it is less than a
millimeter). In all these applications, a liquid phase spreads into porous medium (soil,
concrete, paper), and the size of the liquid imprint is greatly influenced by whether the
liquid spreads in the single- or multi-phase flow. Finally, the imprint size may be
further altered by evaporation, adsorption, chemical reaction and/or external field (e.g.
electromagnetic) that can take place in parallel with the momentum transport (Dinčov
et al., 2004; Zadražil et al., 2006).
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In order to predict the liquid spread accurately, the physical processes have to be
defined and the flow type has to be determined. In respect to the momentum transport,
there are three major physical processes that occur during the liquid spread: (i) change
in shape of the contact area of the liquid that lays on the porous medium surface (inlet
boundary), (ii) existence of the fully and partially saturated porous medium regions
within the porous medium and the geometrical extent of these two regions, and (iii)
secondary spread in which the liquid phase is transported from a fully to a partially
saturated region, where the secondary spread takes place even when there is no liquid
left on the porous medium surface. In some applications, the solution of all of these
processes do not need to be included as for constant area inlet boundary; or for nearly
homogeneous porous medium the spread can be solved as a single-phase flow problem.
The secondary spread which is a very slow process can be neglected if the rate of the
process that opposes the spread is sufficiently high (e.g. rate of evaporation).

The droplet spread into porous medium is one of the examples, where all three
processes (i)-(iii) can exist. The shape of the sessile droplet that spreads into thin
porous medium shows a large variation of the droplet base radius at the beginning and
end of the spread, whereas in the middle of the spread, the base radius remains almost
constant (Starov et al., 2002; Starov, 2004). Using full numerical calculations for a three-
dimensional porous medium, Alleborn et al. (2003) have come to a similar conclusion.
The spread of the droplet is usually modeled setting the fully saturated and non-
saturated region clearly separated (Reis et al., 2004; Alleborn and Raszillier, 2004),
without considering a partially saturated region of the porous medium. As droplet
spread into porous medium is governed by viscous and capillary forces, and assuming
the existence of the fully saturated region only, the droplet spread into a powder cannot
be explained in full by influence of these two forces only (Popovich et al., 1999). Using
MRI, Mantle et al. (2003) have shown that the spread dynamics appears more complex
with the fluid phase distributed between fully and partially saturated regions in porous
medium, and so the droplet spread has to be modeled as a multi-phase flow problem.

Discrete pore network models provide a computational approach to elucidate
transport of the liquid phase and can be used to evaluate transport parameters (Kohout
et al., 2006). In the network models, an actual porous medium is represented as a
network of pores that are connected by throats (Fatt, 1956). For the liquid spread, the
driving force is a resultant of the viscous, gravitational and capillary forces
(Lenormand et al., 1988). From these three forces, the potential threshold is defined
(Prat, 1993) and the liquid distribution can follow single- or multi-phase flow pattern.
From the known phase distribution, the multi-phase parameters can also be calculated
(Constantinides and Payatakes, 1996), where the multi-phase parameters depend on
phase content (saturation), emerging forces, solid/fluid contact angles, ratios of phase
viscosities and flow rates, and the flow history as drainage or imbibition (Valavanides
and Payatakes, 2001).

In this study, a general capillary network model is implemented and used to
investigate the spread of the liquid phase into porous medium and the transition from
single- to multi-phase flow during liquid spread. These changes are investigated using
the liquid phase content (saturation). Using the saturation, the importance of flow
dimensionality and the influence of local medium heterogeneity on the development of
multi-phase flow has been elucidated. Finally, the model is used in the investigation of
the droplet spread time into the porous medium for single- and multi-phase flow and
the influence of inlet and capillary pressures on the flow type developed.
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Model formulation
The liquid spread into porous media is modeled coupling the mass and momentum
balance from the continuity equation and the Darcy law, where the fluid superficial
velocity (u) and pressure (p) are calculated:

r � u ¼ 0 ð1Þ

u ¼ �K

�
rp ð2Þ

where (�) is the fluid viscosity and (K) is the porous medium permeability that for an
isotropic medium becomes a scalar value (K). The problem is usually solved coupling
the mass and momentum balance obtaining the potential equation for pressure. Since
there is the pressure reduction at the liquid free boundary due to the capillary pressure
(Chandio and Webster, 2002), the pressure jump at the free boundary is set equal to:

pfree ¼ pout � pc ð3Þ

in which ‘‘þ’’ is for non-wetting fluid, and ‘‘�’’ is for wetting fluid. From the pressure
solution, the change of the fluid volume occupying porous medium in time is found by
integrating the velocity at the free interface:

dV

dt
¼
ð

Sfree

ufreedS ð4Þ

The set of Equations (1)-(4) allows for solution of the liquid spread providing that the
permeability (K) and the capillary pressure (pc) are known. For single-phase flow (K)
and (pc) are constant, and in the multi-phase flow the same set of equations is used with
the only difference that (K) and (pc) depend on the phase content (saturation).

In the capillary network model, the porous medium is represented as a capillary
network of pores that are interconnected with throats and the liquid spread into porous
medium can be solved regardless whether it occurs as single- or multi-phase flow. The
pores are storage elements, whereas the throats show flow resistance. To account for
local medium heterogeneity, the pore and/or throat size randomly varies in the
network. The conservation of the momentum is defined over the throat, and for the
cylindrical throat of radius (rt) and length (lt) that connects the pores (i) and (j), the flow
rate from the Poiseuille flow can be written as:

qi;j ¼
�r4

t;ij

8�lt;ij
pj � p
� �

¼ gi;j pj � pi

� �
ð5Þ

where (gi,j) is the throat conductance, and the flow rate is defined into pore (i). Having
the flow rate through one throat defined, the conservation of the mass at one pore (i)
can be written, where the sum of all flow rates is equal to zero.

X
1�j�c

qi;j ¼ 0 ð6Þ
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Each pore is connected to some number of neighboring pores that is defined as a pore
coordination number (c). The coordination number of the flow pattern may differ from
the network coordination number as clusters of originally present phase are formed
during the liquid spread into the network. Furthermore, for the pore that is next to the
pore at the interface, balance in Equation (5) is changed, where the pressure (pj) is
replaced by pertinent pressure value. For the inlet boundary, the pressure (pj) becomes
inlet pressure (pinl). The pressure of the originally present phase in the pore at the free
interface is equal to the outlet pressure (pout), whereas in the same pore the pressure in
the liquid phase is reduced for the capillary pressure:

pfree ¼
pout � pc ¼ pout � 2�

rt;free

ð7Þ

with (�) is the surface tension and the capillary pressure is calculated from Laplace–
Young equation assuming the contact angle (�) is equal to zero. Hence, for the pore next
to the interface, (pj) is replaced by (pfree). Finally, the balances for each pore are
assembled obtaining a linear system of algebraic equation, A � p ¼ b, from which
the pressure in the liquid phase is calculated.

Having solved for the liquid phase pressure, the flow rates of pores at the interface
can be calculated, and the flow rate for one pore at the free interface reads as:

qfree ¼ �
X

1�i�cfree

gi pout � pc;i � pi

� �
ð8Þ

where (cfree) is the number of throats occupied by liquid phase. Due to the capillary
instability the interface pores can be both filled and emptied depending on the
pressures of the surrounding pores that are filled by spreading liquid. From the pore
volume (Vp), pore volume fraction that is filled by liquid that is referred to as pore
saturation (s), and the flow rate into the pore (can be either positive or negative), the
time needed to fill/empty any of the pores at the interface can be calculated:

t ¼ 1� sð ÞVp=qfree; fill
�sVp=qfree; empty

�
ð9Þ

From calculating the fill/empty times for all pores at the interface (ti), (1 � i � nfree),
the time of the discrete step for which one pore changes its ‘‘state’’ is found as a
minimum time:

tstep ¼ min
1�i�nfree

tif g ð10Þ

and from time step (tstep), the changes of the pore saturation is determined. Finally, the
volume of the fluid (Vstep) that flows into the porous medium for particular step is
found as:

Vstep ¼ tstep

X
1�i�nfree

qfree;i ð11Þ

where (qfree,i) are flow rates into the pores at the free interface.
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Numerical solution
Solving the liquid spread using the capillary network model consists of two parts, the
first being the capillary network creation and the latter one is the flow solution on the
network defined. A regular rectangular network consists of (nx � ny � nz) pores, with
the coordination number (c) that is defined as a number of neighbors connected to one
pore equal to four or six for two- and three-dimensional network, respectively. A
numerical procedure for the network generation is developed and it is independent of
the problem dimensionality, where for two-dimensional cases, the number of layers in
(y) direction is set equal to one, ny ¼1. In the liquid spread, there are three parameters
that need to be known, namely (�, K, pc), that are related to the network parameters,
(Vp, rt, lt). If the volume of all the pores in the network (Vp) is equal, it can be calculated
from the overall volume of porous medium (Vm), porosity (�) and the network size
(nx � ny � nz):

Vp ¼ �Vm

nx ny nzð Þ ð12Þ

If the pore volume is variable and prescribed with the distribution function, the sum of
all the pore volumes has to be equal to the porous medium void volume (�Vm). The
remaining two parameters (pc) and (K) are set by adjusting throat parameters: radius
(rt) and length (lt), where the throat radius is randomly distributed and it is found such
to satisfy the capillary pressure, and (lt) is found adjusting the network permeability.
An additional network parameter that can be used to adjust (pc) and (K) is the network
coordination number that can be set to vary in the network (Hilpert et al., 2003;
Ioannidis and Chatzis, 1993).

A general capillary network solution of the liquid spread is implemented for
arbitrary network dimensionality, coordination number and flow capillary number
(defined as a ratio of viscous and capillary force). In the solution, the numerical
procedure for the cluster identification is based on the cluster definition that it is a part
of the network occupied with the originally present phase from which network inlet or
outlet can not be reached without using the pores/throats occupied with the spreading
liquid. The influence of the capillary number is given through the flow rate in the pore
at the free interface given in Equation (8), where the contribution of both capillary and
viscous force is included. As the liquid spreads into the network, the number of pores
filled with liquid increases and the system matrix (A) becomes larger. However, (A)
changes only in the part for the pore being filled or emptied, and therefore, (A) is
defined as a dynamic array that is updated only for the pores that are altered in the
current step. Finally, in the code the mass conservation is checked in each step and
from the integral mass balance one can write:

ð
Sinl

uinldS ¼ �
ð

Sfree

ufreedS ð13Þ

where the flow rate across inlet boundary (Sinl) has to be equal to the flow across the
free interface (Sfree).

Results and discussion
Unidirectional spread into two- and three-dimensional networks, unidirectional radial
spread into two-dimensional network and the sessile droplet spreads are solved, and
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the changes in the saturation profile and spread time are investigated. All spreads are
solved for the non-changing area of the inlet boundary. The droplet spread is also
solved for a variable capillary number. Using Equation (13) the mass conservation is
checked, where the relative error calculated from the flow rate across the inlet
boundary (Qinl) and free interface (Qfree) as (1-Qfree/Qinl) is in the order of 10�10. In all
calculations, using a random number generator the throat radii were uniformly
distributed in the range (rmin, rmax), with the heterogeneity parameter, � ¼ rmax/
rmin � 1. Other throat radius distributions (e.g. normal, log-normal, binomial) can
easily be prescribed in the numerical solver. In this study, the uniform distribution is
used in order to introduce the medium local heterogeneity that is responsible for
emerging of a multi-phase flow scenario. It should be noted that other forms of
distributions will also produce a multi-phase flow pattern with a different saturation
profile along principal flow direction and transport parameters (capillary pressure and
phase permeability). These characteristics can be used in constructing the network
that represents an actual porous medium. Without actual numerical simulations, it is
hard to predict how the throat size distribution influences multi-phase flow
development and transport parameters. By using a different distribution the fraction of
small (or large) throats is changed therefore altering the process rate and fluid behavior
at the free interface (e.g. using log-normal distribution instead of the uniform one the
fraction of small throats increases). Finally, for the capillary driven flow, the pressures
at the inlet and outlet boundaries are kept equal, pinl ¼ pout and the influence of
viscous force on the droplet spread is investigated by gradually increasing (pinl).

Unidirectional flows
Two-dimensional network of nx � ny � nz¼ 100 � 1 � 100 is constructed, with the
radius of inlet equal to r0 ¼ nx/10 placed in the domain center, and the medium
heterogeneity (�) is varied from 0.1 to 14. In Figure 1(a)-(d), the flow patterns for four
different (�) of the spreading phase are shown (black color), and the part of the medium

Figure 1.
Radial spread for different
heterogeneous media over
the network of
nx ¼ nz ¼ 100, where
spreading phase is given
in black color. The
clusters of originally
present phase become
larger and the flow front
becomes more irregular
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that the spreading liquid does not reach and the entrapped originally present phase
(clusters) are shown with dark grey color. It can be seen that the free interface becomes
more irregular as heterogeneity increases, where for low (�) the free interface is smooth.
The local potential of the spreading phase causes this irregularity at the flow front, and
only some pores at the free interface can be accessed by spreading liquid. In
Figure 1(a)-(d), these pores are depicted in light grey color, and their number is reduced
as (�) increases. Hence, it is evident that the spreading liquid saturation profile will
decrease faster as medium heterogeneity (�) increases. This is shown in Figure 2, where
the radial saturation profiles for five different (�) are plotted. It can be seen that for low
(�), the saturation remains very close to one, whereas for higher (�) saturation decreases
to as low as 0.75. However, the saturation did not reach its constant value and after 60
pores along radial principal flow direction the saturation profile is still developing.

In order to find whether the saturation reaches the constant value, the radial spread
is solved on the larger network of nx � ny � nz¼ 400 � 1 � 400 and r0 ¼ nx/10.
Figure 3 shows the numerical results:

. phase distribution; and

. saturation profile.

The saturation profile in Figure 3(b) is averaged for two different radial increments (�r): in
total 30 (solid line) and 90 (dashed line) radial slices. The numerical solution shows that the
saturations gradient decreases, but even after rf > 350 pores the saturation does not
become constant. Here, the smallest saturation, s � 0.65 is reached. To further increase the
number of pores along which spread takes place, two-dimensional network
nx � ny � nz¼ 60 � 1 � 600 is constructed, where the phase spreads along (nz)
direction, and the fluid inlet is placed along (nx) boundary. Taking nx ¼ 60, the network
should be sufficiently large to reduce the edge effects caused by clusters. The distribution
of phases: spreading and originally present one is shown in Figure 4 with black and dark
grey colors, respectively. In Figure 4(a), the whole network is depicted, and Figure 4(b)
shows a part of the domain only. The saturation profiles are shown in Figure 5, where the
averaged saturation for (z ¼ const.) and (�z ¼ const.) are depicted with dashed double
dotted and solid lines, respectively. It can be observed that the saturation indeed decreases
for the first 450 pores, and the numerical calculations with larger network should be
undertaken in order to check the saturation profile for z > 450.

Using the two-dimensional network, the spread of the liquid is restricted, as clusters
are two-dimensional objects. Therefore, the computation of the unidirectional fluid

Figure 2.
Radial saturation profiles

for spreads in different
heterogeneous media
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spread is repeated, but using the three-dimensional network, nx � ny �
nz ¼ 60 � 10 � 250, where the fluid inlet is placed at nx ny plane, and again, the flow
takes place in (z) direction. The originally present phase clusters are visualized and
shown in Figure 6(a). There are no clusters of originally present phase close to the
domain inlet, and they are formed and increase in size down the flow direction
(depicted as light grey color inclusions). The saturation change as a function of (z) is
shown in Figure 6(b). As in two-dimensional networks, the saturation of the spreading
phase close to the inlet is equal to one, and it decreases downstream. In Figure 7, the
saturation profiles for different unidirectional flows are compared for constant network
heterogeneity, � ¼ 0.7. The decrease of saturation is smallest for the three-dimensional

Figure 3.
Radial spread into larger
network of nx ¼ nz ¼ 400
and heterogeneity
� ¼ 0.7: (a) distribution of
phases, where spreading
phase is shown with black
color, and (b) radial
saturation profile. Two
profiles are obtained for
radius divided into 30 and
90 radial slices

Figure 4.
Unidirectional spread of
the fluid into rectangular
two-dimensional network,
nx � nz ¼ 60 � 600. The
maximum clusters size
increases up to ten pores.
In figure (b), a small part
of the network is depicted
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flow (dashed line) as network coordination number is larger (six compared to four) and
the cluster size is smallest. Finally, the fastest decrease of the saturation is observed for
radial flow that might be attributed to its diverging nature.

Droplet spread
Initially, the sessile droplet spread into homogeneous network (here, rmin ¼ rmax and
� ¼ rmax/rmin – 1 ¼ 0) is solved, where the influence of the droplet base radius (r0) is
investigated. In the numerical calculations, a droplet of volume, Vd,0¼ 30 mm3

spreads into a network of nx � ny � nz¼ 60 � 60 � 60 pores. In Figure 8, the
shapes of the droplet at the central plane for two droplet base radii r0 ¼ nx/6 and

Figure 5.
Saturation profile in
rectangular network

averaged over two different
network segments:

z ¼ const double dotted
dashed line) and

�z ¼ const. (solid line)

Figure 6.
Unidirectional spread of

the fluid into rectangular
three-dimensional network,

nx � ny � nz ¼ 60 �
10 � 250: (a) phase

distribution with the
clusters of originally

present phase shown in
light gray color, and (b)

saturation profile
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r0 ¼ nx/2 are depicted with dashed dotted and solid lines, respectively. The
penetration depth is larger for r0 ¼ nx/6, and the spread time for r0 ¼ nx/6 droplet is
an order of magnitude longer compared to r0 ¼ nx/2 droplet. The numerical
simulations of the same two drops are repeated, but representing the porous medium
as a heterogeneous one, with �¼ 0.7. The results of the droplet spreads are shown in
Figures 9(a) and (b) for r0 ¼ nx/2 and r0 ¼ nx/6, respectively. In Figure 9(a), only 40
pores in (z) direction are depicted. There are large differences in flow patterns for two
different droplet base radii, r0 ¼ nx/6 and r0 ¼ nx/2. The droplet spread for r0 ¼ nx/2
remains close to the single-phase flow, whereas multi-phase flow for r0 ¼ nx/6
droplet spread is observed. In order to better visualize the flow type, an arbitrary yOz
plane is depicted in Figure 9 also. For r0 ¼ nx/2, a few clusters of originally present
phase can be observed. On the other hand, there is a large number of clusters for
r0 ¼ nx/6 that appear at the some distance from the inlet and as similar to
unidirectional flows, the clusters increase in number and size as droplet spreads
further into the network. The multi-phase flow development is caused by the spread
rate and for slower spread (r0 ¼ nx/6), even a droplet of volume less than
Vd ¼ 30 mm3 will spread in the multi-phase flow.

The times it takes for the droplet to spread for both homogeneous (� ¼ 0) and
heterogeneous (� > 0) networks are calculated. Additionally, the time changes of:

. flow rates across droplet base (inlet) (Q); and

. droplet remaining volume on the porous medium surface (Vd,free) are calculated.

Figure 7.
Influence of
dimensionality and flow
type on saturation profile.
The size of three-
dimensional clusters is
reduced, whereas radial
flow promotes large
clusters formation

Figure 8.
The spread of droplet of
constant volume into
homogeneous porous
medium nx � ny � nz¼
60 � 6 0 � 60 for two
different droplet base
radii (r0), r0 ¼ nx/2 (solid
line), and r0 ¼ nx/6
(dashed dotted line)
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It is well known (De Wit, 1995) that the permeability (K) of log-normally distributed
heterogeneous medium that is referred to as effective permeability is smaller compared
to the permeability of a homogeneous sample. For one - and two-dimensional flows the
effective permeability is equal to the harmonic (KH) and geometric (KG) mean of local
permeabilities, respectively. Replacing the actual medium with a homogeneous one and
setting its effective permeability to be equal to the arithmetic mean (KA) produces an
error according to (KA � KG � KH), where the equal sign is only true for a
homogeneous sample. Using numerical calculations, it has also been shown that for
uniformly distributed heterogeneous medium the effective permeability decreases as
the medium heterogeneity increases (Markicevic et al., 2007). Therefore, the spread
time increases for heterogeneous network. Figure 10 shows the changes of (Q) and
(Vd,free) in time for r0 ¼ nx/2 and both homogeneous (solid lines) and heterogeneous
(dashed double dotted lines). The spread time is calculated from Vd,free ¼ 0, where it
can be seen from Figure 10 that the spread time is longer for heterogeneous (� > 0)
sample of around 20 per cent. The spread of droplet Vd ¼ 30 mm3 and r0 ¼ nx/6
occurs as a multi-phase flow (see Figure 9(b)), and modeling the actual (� > 0) network
by homogeneous one (� ¼ 0) will produce a larger error than in the previous case
(Figure 9(a)). The changes of (Q) and (Vd,free) in time are shown in Figure 11. At first
glance, a stark difference in spread times can be observed, where ts,het � 2 � ts,hom.
This finding (ts,het � 2 � ts,hom) implies that the influence of the multi-phase transport
is much higher compared to the heterogeneity influence in single-phase flow (refer to
Figure 10, where ts,het � 1.2 � ts,hom).

Figure 9.
The spreading phase

distribution and
originally present phase

clusters (light gray color)
for droplet spread

into heterogeneous
medium, � ¼ 0.7 and

two droplet base radii (r0):
(a) r0 ¼ nx/2, where
single-phase flow is

observed, and (b) r0 ¼ nx/
6, with multi-phase flow

developed
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Finally, the influence of the viscous and capillary forces on the rate of droplet spread is
investigated for a sessile droplet that spreads in the multi-phase flow (as one in Figure
9(b)). Setting the liquid surface tension equal to zero (�¼ 0), the capillary force is
excluded and the spread time is influenced by viscous force only. The ratio between
viscous and capillary force is altered by keeping (� 6¼ 0) and changing the inlet
pressure (pinl). It is obvious that for (pinl ¼ pout), the spread of the sessile droplet is
under the capillary force only. The changes of flow rate at the inlet boundary (Q) in
time are shown in Figure 12, where pairs (�¼ 0 and � 6¼ 0) of curves are given except

Figure 10.
Changes of the remaining
droplet volume on porous
medium surface (Vd,free),
and the flow rate into
porous medium (Q) for
r0 ¼ nx/2 for
homogeneous (solid lines),
and heterogeneous
(dashed dotted lines)
porous medium

Figure 11.
Changes of the remaining
droplet volume on porous
medium surface (Vd,free),
and the flow rate into
porous medium (Q) for
r0 ¼ nx/6 for
homogeneous (solid lines),
and heterogeneous
(dashed dotted lines)
porous medium

Figure 12.
Influence of capillary and
viscous force on the
droplet spread rate and
spread time
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for (pinl ¼ pout) condition. It can be seen that for a sufficiently high viscous force (high
flow rate), the capillary force can be neglected and curves (�¼ 0) and (� 6¼ 0) almost
coincide. The curves (Q ~ t) cannot be collapsed on the same dependence as with the
increase of spread rate, the spread changes from multi-phase to the single-phase flow
due to the flow stabilization.

Conclusions
The capillary network model that accounts for the capillary pressure jump at the free
interface is developed and used to study the spread of the wetting fluid into porous
medium. Both homogeneous and heterogeneous media flow can be solved. For the
spread into heterogeneous medium it is found that the flow dimensionality, local
heterogeneity and distance from the inlet influence the saturation. Irrespective from the
medium heterogeneity, the fluid saturation remains almost equal to one in the part of
the medium close to the inlet and it decreases in the principal flow direction as spread
becomes slower. Even for single-phase flow, the fluid spread in a heterogeneous
medium differs from its counterpart in a homogeneous sample, where it is found that
the spread time is longer for a heterogeneous sample. In the heterogeneous medium, the
free interface is not smooth as a result of the local changes in the porous medium
structure and the flow front of a particular width is formed. Once the flow front at the
free interface becomes sufficiently broad, the separate flow paths within the flow front
can merge and the clusters of originally present phase are formed and multi-phase flow
occurs. The transition from single- to multi-phase flow is investigated, where it is found
that the droplet of the same volume can spread in the single- or multi-phase flow
depending on the process rate. This finding is corroborated by investigating the
droplet spread for different inlet pressures (capillary number), where for the faster
spread (higher inlet pressure), the transition from single- to multi-phase flow occurs
later as a result of the flow stabilization.
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